Product Data Science
Product Data Science
Learn how to develop product sense, create metrics, and design robust A/B tests
Learn how to develop product sense, create metrics, and design robust A/B tests
You will learn
Develop data-driven hypotheses for new A/B tests
Learn what was the data-driven hypothesis behind FB stories, Netflix free trial, Youtube Premium, etc.
Design actionable metrics
When to use average-based vs threshold-based metrics? How to identify those thresholds in metrics such as percentage of users with 7 friends in 10 days?
Evaluate metric trade-offs
How to evaluate changes that positively affect some key metrics, but negatively affect others? Which strategy to use to decide whether a product change is good or not in those cases?
A/B Testing
How to design statistically sound A/B tests? How to choose test traffic percentage? How to deal with novelty effect, connected users, randomization bugs, or other typical issues in tech A/B tests?
Applied data
How to deal with actual tech data, such as sudden spikes or drops, bugs, unbalanced metrics, non-random missing data, A/B test results, conversion data, etc.
Machine Learning
How to use machine learning to fight frauds, build data products, or develop product insights? How to evaluate the impact of new machine learning models into production?
12 Sections, >130 lessons, exercises, and product case studies
Real product data science problems using tech company tables, code in SQL, Python, and R
You will also automatically get enrolled in a separate coding course teaching a framework to tackle data science coding exercises
Bahar Bazargan – got a job as a Data Scientist @ Facebook – US
Samples
Product Case Study – Insights
Should a free trial require credit card info? Where in the funnel should the highest friction point be?
See the lesson
Logistic Regression
When to choose a logistic regression, how to interpret it, and how to use its output to come up with product ideas
See the lesson
A/B tests: Sample Size
How to estimate for how many days you should run an A/B test, from both a statistical and business perspective
See the lesson
A/B tests: Novelty Effect
How to understand if a test is affected by novelty effect and how to deal with it in practice
See the lesson
A/B Tests: Randomization
The crucial step of making sure that test and control are properly randomized
See the lesson
Metrics: Ads Challenge Solution
How to pick a metric for ads, identify the best performing ones, and analyze trends
See the lessonKenny Tang – Data Scientist @ SmarTone Telecom Lim – Hong Kong
You will learn real product data science!
Course Sections
12 sections with more than 130 lessons and exercises in total.
Real tech company tables, i.e. user table, event table, A/B test tables, etc.
1) Product Sense via Machine Learning
Practical examples on how to use regressions, ML, partial dependence plots, and rulefit to drive product development and come up with ideas for new product features
2) Product and Metrics – Case Studies
18 case studies on how to design actionable metrics, understand what drives them, and figure out how to improve them via new product features
3) Personalization
In depth practical exercise on how to use machine learning to build a data product personalized at the user level. This is the framework used to optimize almost all data products
4) Unbalanced Classes
Almost all tech company data have unbalanced classes, i.e. fraud, ad clicks, conversation rate, email clicks, etc. These exercises explain how to deal with that
5) Missing data in tech
Most of missing data in tech are non-random, i.e. users choose to not provide certain information about themselves.These lessons explain how to deal with biased missing data. Include Uber and Airbnb case studies
6) Fraud – Case Studies
Fraud is one of the most common data science applications. These case studies explain how to set up the problem from a ML standpoint as well the how to build a product around it
7) A/B Testing – Practice
A series of lessons covering all that’s needed to know about A/B testing. Includes statistical inference relevant theory as well as very practical tech problems (novelty effect, randomization, sample size, testing by market, etc.)
8) A/B testing – Case Studies
12 case studies describing how top tech companies design their A/B tests. They focus on the most common issues tech companies face, like how to test in social networks or marketplaces, how to estimate long term effects, when A/B tests fail, etc.
9) New Product Case Studies
A new list of product case studies. They focus on trade-offs when evaluating multiple metrics at the same time (i.e. what to do if some key metrics are up and some down) as well as explaining the thought process behind using data to choose whether testing a totally new feature or product
10) Collection of tech company blog posts/case studies
This is a collection of company write-ups, tutorials, and blog posts. Includes Airbnb, FB, Linkedin, Google, Netflix and many more other companies describing how they design A/B tests and use DS to drive product development
11) Data challenges with solutions
They come from the “Collection of data science takehome challenges” book. They touch all the topics taught in the course. All challenges come with full solution in R and Python
12) Metrics via SQL
Teaches a reusable framework to solve coding exercises in SQL, R and Python. Includes exercises about metrics, data processing, aggregate statistics as well as probability exercises
Can I pay for this via my employee training budget?
Yes, the course perfectly fits most employee training requirements. Approval process at most companies has been straightforward.
This course has been approved by managers at >150 companies of different sizes (from FAANG to 20-people start-ups), industries (tech, banks, consulting, healthcare), and locations (North America, Asia, Europe).
If you need any help to facilitate the reimbursement process, need help in matching course content to your current work tasks, or want to see a sample of the invoice you could receive after getting the course, please get in touch
Pricing
$ 1625 2 monthly payments
☑ Lifetime access to course curriculum and all its updates
Curriculum includes a mix of theoretical lessons, product case studies, and challenges with solution.
In the last couple of years, updates included tons of brand new and constantly up-to-date product case studies as well as an entire course in coding for data science
☑ Unlimited 1:1 support from course author for 1 year
Any questions you have about the course material or anything related to product data science, you can send an email, skype chat, or share a Google doc with all the questions. You will get a prompt reply
☑ Data science coding course
When you enroll in the product data science course, you will also automatically get enrolled in the data science coding course from the same author. The coding course teaches a framework to tackle common data science coding exercises in SQL, Python, and R
☑ Personalized feedback
Send your solution for all the exercises in the course. You’ll get a detailed feedback on your work
Enroll
Doudou Tang – Data Scientist @ Booking.com – UK
Author

Giulio Palombo
Giulio Palombo worked as a data scientist for several top Silicon Valley tech companies, the last one being Airbnb.
He also wrote the books “A Collection of Data Science Take-Home Challenges” and “40 Data Science Product Questions” that have collectively sold >10K copies in ~7 years.
FAQ
I am buying this with my employee training budget, do you provide a certificate or invoice that I can show to my employer?
Yeah, definitely. Can provide certificate, invoice, or anything else you need.
Does this course also include the data science take-home challenges and 40 case studies?
Yeah, all those challenges and product questions are here too. However, this course includes much more.
Its main focus is on teaching product data science via a combination of theoretical lessons and practical examples. The challenges then come at the end to make sure things were learned properly.
Also, the course includes many new product questions like, for instance, the first one in the samples.
And all the challenges have a solution, not just 4.
What’s the main difference between this course and the other million data science courses available?
Frankly speaking, most data science courses are not particularly useful because they have little/nothing to do with what data scientists actually do at work.
Firstly, data scientists don’t spend their time over-tuning a fancy model to marginally improve its performance. In fact, most of data science work is about looking at the data to come up with product ideas and properly designing A/B tests.
And the few applied courses tend to be so simple to the point of being highly unrealistic. I.e., most A/B test courses will teach you to randomly split users, run the two versions of the site, and check the results. But that strategy almost never works for several reasons (test and control would never be independent in social networks or marketplaces, can’t estimate novelty effect, etc.).
This course will teach you how product data science is actually done at top tech companies. The course uses data that look exactly like tech company tables (including wrong entries, non-random missing values, A/B tests, etc.). And then actual data science projects are built on top of those data.
I couldn’t find an answer to my question here!
Ask any questions via the form below